Tragzfer Rooboi

Kobot Table A
Arm p

g PART OUT

PART_IN _
b : eNe P :
P — ' Machine | TTteee.. —_—
i Conveyor Conveyor

By Kurt Foster, 2017

Demonstration YouTube Link: https://voutu.be/VDCZo-pmgzg
Project Accomplishments:

- Two wafer handling robot arms (donated by HP Inc.) were integrated into a production
line scenario utilizing two Arduino’s and a PLC in a single project.

- I'was the first mechatronics student to integrate the undocumented/unused robots into a
functional system, programmed the Arduino’s and PLC, and wired the system.

- Created full documentation, wiring schematic, ladder diagram, and Arduino code.

- My Mechatronics program instructor is now using this documentation to create a lab
integrating a PLC and Arduino for future students.

https://youtu.be/VDCZo-pmgzg

This project was an assignment in my Advanced PLC Troubleshooting and Wiring class I took
during the Fall term at LBCC in 2017. It was possible to combine assignments if it was
demonstrated that the automated process created went well above and beyond the assumptions of
the original system design. I incorporated a full terms’ worth of labs into this one lab. In this
document, I will compare what was given to me and how I went about completing the process.

Transfer Robot
Robot Table Arm
Arm >

PART _IN PART OUT
' , CNC CNC T-e.. §
. * Machine Machine | “"c----- —_—
Conveyor Conveyor 1}

Figure 1: Problem Setup from Description

Problem Description: Parts move into and out of machining work cell via conveyors. One robot
moves the unfinished part from the incoming conveyor to a CNC lathe which turns the
rectangular part into an axle. This process takes 1 minute and then the robot moves the part to a
transfer table when the second robot picks it up and moves it to a second CNC machine which
measures, deburrs and polishes the axle, a process that takes 1 minute, 15 seconds. The
PART IN sensor input is momentarily triggered when a part enters the workcell and

PART OUT is triggered when a part leaves the work cell. A reset should be included in order to
start the process over.

The following pages document what I decided to do for completion of the project.

Sections

1. Description of Problem and Process...

2. Operation with Cylinders and Stepper Motors...

3. List of Input and Output Devices...

4. 1IF/THEN Logic Statements for the Program...

5. Wiring Diagram of PLC and Arduino...
6. PLC Ladder Logic and Arduino Code...
a. Final Arduino Code...

7. Photos of the System Wired Together...

Page:

10

11

13

20

24

Section 1: Description of the problem and process

Summary: The problem is to go from raw material to a finished part that successfully goes
through two separate CNC machines. There are two main parts to the process, one that controls
the robots and the other that keeps track of parts coming in and out.

Robot Control Process: A part goes on a moving conveyor and passes a sensor. The sensor will
turn the conveyor off and then run the first robot arm sequence. The first robot arm starts at the
transfer table unextended. It will go to the conveyor and then extend and then retract which picks
the part up. First robot then moves to the CNC machine and then extends and retracts within
about a second, dropping the part off at the first CNC machine. After a single minute, the robot
arm extends and picks up the part and then retracts. It will then move the part to the transfer
table. If more parts show up on the first conveyor, the whole first robot sequence restarts. Once a
part has reached the transfer table, a sensor will get activated, and stay activated as long as there
are parts sitting there, kind of like a vertical trey. As long as the sensor is activated, the second
robot sequence will repeat itself. The second robot starts at the transfer table unextended. When
the transfer table sensor is activated, the second robot arm extends to pick the part up and retracts
over the course of a second. Robot two then rotates to the second CNC machine extends and
retracts, dropping the part off at the CNC machine. The second CNC machine will run for one
minute and fifteen seconds. After this time period, the robot arm will extend and retract to pick
up the finished part from the CNC machine. Once the part is taken, robot two will rotate to the
second conveyor and drop part off. After the part is dropped off the second conveyor will run.
Five seconds after the second conveyor sensor is activated, the second conveyor will stop.

Part Tracking Process: Each time a part goes past the conveyor in sensor, it starts the process
of the picking up and placing action. Each time this sensor is activated, it counts up a total parts
counter within the PLC. If this total parts counter is equal to twenty-five parts, then the first
section of the pick and place will stop until the total parts counter goes down. An exit sensor is
placed at the conveyor out conveyor. Each time this sensor is activated, the total parts counter
will go down as many times as the sensor parts out is activated. In between these sensors lies a
part present sensor. This gets activated any time there is a part to be sent on to the second CNC
machine of the whole process. When this sensor is active, the second part of the operation will
always continue.

Section 2: Operation with Cylinders and Stepper Motors

Since the design of this system was not set in stone, I went off and put together a list of
components required to power pneumatic cylinders for the linear action, which would be
mounted on top of stepper motors. This makes use of electrically actuated directional control
valves and limit switches for the cylinders.

Ultimately, I would use the internal stepper of each robot arm to control the linear action, which

removed the need for pneumatic cylinders.

Vertical_St 1 Vertical_Stepper_2
Part_Present 2 OPREL

Tragsfer
T:li‘! le 15 3

Ci-v - —

CNC t

CNC [, :
Machine Machine I — :

Conveyor Conveyor
- CNC _Fan_1 CNC Fan 2 - i

~—

1
—0 O— |Master Start —Q 1 ©— | Master_stop —_0 O— Master_Reset

Figure 2: Possible system setup with limit switches and pneumatic cylinders attached to stepper motors. Blue square
items are outputs, green square items are inputs

OPERATION AT A GLANCE:
- When the arm of the robot is extended the robot picks up the part.
- Turning on the CNC Machine will trigger the machining process.
- When the robot holds the part over the CNC Machine the part is in the CNC Machine.
- When a signal is sent to the Arduino to position the robot the robot is in position after a

period of time.

When a part is taken to the Transfer Table it is held and put in place for the second robot
to pick up.

Parts are placed on the Conveyor In externally.

Parts are removed from the Conveyor Out externally.

START/STOP AND COUNTING:

A Master_Start button will turn on Conveyor In motor

A Master Stop button will cause all motors (and pneumatic cylinders if we use them) to
come to a stop but keeps counters in memory (this is a easy integration, just put a relay
contact at every “moving” output rung, it would have the same relay contact as the main
start-stop memory latch rung)

A Master Reset button will reset all counters and robot arms to their normal positions,
and it will cut power to both conveyors. (to start process again, click start) NOTE:
Master Stop must be pressed before reset can be pressed

Part_In sensor will count up a Total Counter

Part Out sensor will subtract (count down) a Total Counter

When Total Counter reaches 25, Cell 25P indicator is turned on

When Total Counter reaches 25, Conveyor In will turn off

When Total Counter reaches 25, it will latch a memory on a Count 25 internal bit
When Total Counter is less than or equal to 5 and Count 25 is latched, it will turn on
Conveyor In motor

When Total Counter is 5 or less (less than or equal to) and Total Counter at 25 memory
is latched, then Conveyor In will turn on

When Total Counter is zero, the Cell Empty indicator will flash

ROBOT ARM SEQUENCES GO AS FOLLOWS:
Robot Arm Starting Points: 1 will assume the starting positions of the robot arms are

Unextended, and located at the Transfer Table at the start, this is position 3 and 4.

NOTE: Pneumatic cylinders are used for the extended and retracts, Robot 1 retracted will be

powered by Sol 2, extended will be powered by Sol 1 ... Robot 2 retracted will be powered by

Sol 4, extended powered by Sol 3.

IF we use limit switches to determine the positions of the cylinders, the retracted Robot Arm 1

cylinder will activate LS 1, extended will activate LS 2 ... Robot Arm_2 retracted will activate
LS 3, extended will activate LS 4.

I

Position_3 | Trapsfer

Position_4
T;]PE

[Position_1]---" |Position_2|- B = |)
: - — Conveyor |
E|P05|t|on_5|
= Position_6

Figure 3: Specific positions for each robot arm. During the process, it is assumed that both robots are positioned at
Position 3 and Position_4 at the start of the process for Robot Arm_1 and Robot Arm_2 respectively.

ROBOT ARM ONE Events:

When Part_In sensor is activated, Conveyor In motor stops

As long as the Conveyor In motor is stopped AND Part In sensor memory is latched
AND LS 1 is active, Vertical Stepper 1 will move to Position 1 (90 degrees
ClockWise)

When Position_1 is reached (We will press buttons on arduino to advance stepper) it will
activate TOF1_Sol 1 (which is a timer off delay “output”) immediately extending
Robot Arm 1 (Sol 1)

When TOF1_Sol 1 is done timing for one second, retract Robot Arm_1 by cutting
power to Sol 1 and powering Sol 2

When LS 1 is activated and TOF_Sol 1 Done Timing bit is true, then rotate

Vertical Stepper 1 forty-five degrees CounterClockWise (for position 2)

When Position 2 is reached and LS 1 is active, cut power to Sol 2

When LS 1 is active and Sol 2 has power cut, then TOF2_Sol 1 timer off delay turns on
immediately powering Sol 1

When TOF2 Sol 1 is done timing for one second, retract Robot Arm_1 by cutting
power to Sol 1

When TOF2_Sol 1 done bit and LS 1 are true, turn on TOF1_CNC_Machine off delay
timer

When TOF1 CNC Machine ENABLE bit is true, run CNC Fan 1 for One Minute
When TOF1 _CNC Machine DONE bit is true, extend SOL 1 (robot arm to get part on
lathe)

When LS 2 is reached and TOF1 _CNC_ Machine DONE bit is true, turn on TOF1 Sol 2
timer off delay which is ONE SECOND

When TOF1 _Sol 2 timer off delay ENABLE BIT is true cut power to SOL 1 and power
SOL 2 retracting part from lathe

When LS 1 and NOT SOL 1, then turn forty-five degrees CounterClockWise (for
position 2) on Vetical Stepper 1 (look above)

When position 3 is met, extend Cylinder 1 for 1 second, then retract.

IF another part passes Part In, the system should restart

ROBOT ARM TWO Events:

When part is present (at transfer table) and LS 3 on cylinder 2, then the cylinder will
extend (power sol_3)

1 second Time delay...

When LS 4 is reached, retract cylinder 2 which is cutting power to SOL 3 and then
powering SOL 4

When LS 3 is reached and NOT Part_Present, rotate Vertical Stepper 2 forty-five
degrees clockwise

When position_5 is reached, power SOL_3 for about a second (so add in TOF)

When LS 3 and position 5 is reached, then power up CNC_Machine 2 for 1 minute 15
seconds using a Timer off delay

When LS 3 and position 5 is reached, power up Conveyor Out possibly using memory
When timer off delay for CNC machine 2 is done, move Vertical Stepper 2 fortyfive
degrees counterclockwise to position 6

When position 6 is reached, extend cylinder 2 by powering SOL 3

time delay for 1 second, then after the second, retract the cylinder by taking away power
from SOL 3 and powering SOL 4

If time delay is reached, and position 6 is reached, return stepper to position 4

If time delay is reached, and position 6 is reached, cut power to Conveyor Out

The system should repeat the process when there is another part at Part Present

Section 3: List of Input and Output Devices

Physical Real World Inputs/Outputs

Card One

1.0/0 MASTER START 0:1/0

1.0/1 MASTER STOP 0:1/1

1:0/2 ARDUINO RESET 0:1/3

1:0/3 PART_IN 0:12

1.0/4 PART OUT 0:1/4

1:0/5 PART PRESENT 0:1/5

1:0/6 RESET COUNT 0:1/6
0:1/7
0:1/8
0:1/9

Virtual OQutputs

B3:0/0 POWER RELAY

B3:0/1 TOTAL_CELL PARTS 25

T4:0 CNC TIME 1

T4:1 CNC _TIME 2

C5:0 TOTAL PART COUNTER

C5:0/RESET TOTAL PART COUNTER/RESET

Card Two

CONVEYOR_IN
CONVEYOR_OUT
CNC_FAN 1

CNC_FAN 2
ROBOT ONE RELAY 1
ROBOT ONE_RELAY 2
ROBOT TWO RELAY 3
ROBOT TWO RELAY 4
ROBOT ONE RESET RELAY
ROBOT TWO RESET RELAY

Section 4: IF/THEN Logic Statements for the PLC Program

IF MASTER_STOP AND (MASTER_START OR POWER_RELAY) THEN POWER RELAY
IF POWER RELAY AND NOT PART IN THEN CONVEYOR IN

IF POWER RELAY THEN CONVEYOR_OUT

IF POWER_RELAY AND (PART IN OR CNC_TIME 1 TT BIT) AND NOT
(TOTAL_CELL_PARTS_25) THEN CNC_TIME _1

IF POWER RELAY AND PART IN THEN TOTAL PART COUNTER (CTU)

IF POWER RELAY AND PART OUT THEN TOTAL PART COUNTER (CTD)

IF PART COUNTER.ACC EQUALS 25 THEN TOTAL CELL PARTS_ 25 internal relay
IF RESET_COUNT THEN RESET TOTAL PART COUNTER

IF POWER RELAY AND (LOW_LIMIT of 5> CNC_TIME 1 ACC BIT of 0>
HIGH_LIMIT of 1000) THEN ROBOT ONE RELAY 1

IF POWER_RELAY AND (LOW_LIMIT of 7000 > CNC_TIME 1 ACC_BIT of 0 >
HIGH_LIMIT of 15000) THEN CNC_FAN_1

IF POWER RELAY AND (LOW_LIMIT of 16000 > CNC_TIME 1 ACC BIT of 0 >
HIGH_LIMIT of 17000) THEN ROBOT ONE RELAY 2

IF POWER_RELAY AND (PART PRESENT OR CNC_TIME_2.TT) THEN CNC_TIME 2
IF POWER _RELAY AND (LOW_LIMIT of 5> CNC_TIME 2 ACC BIT of 0 >
HIGH_LIMIT of 1000) THEN ROBOT TWO RELAY 3

IF POWER _RELAY AND (LOW_LIMIT of 7000 > CNC_TIME 2 ACC BIT of 0 >
HIGH_LIMIT of 15000) THEN CNC_FAN 2

IF POWER RELAY AND (LOW_LIMIT of 16000 > CNC_TIME 2 ACC BIT of 0 >
HIGH_LIMIT of 17000) THEN ROBOT TWO RELAY 4

IF [POWER_RELAY AND (LOW_LIMIT 26000 > CNC TIME 1 ACC > HIGH LIMIT
27000 OR LOW_LIMIT 26000 > CNC_TIME 2 ACC > HIGH_LIMIT 27000)] OR
(ARDUINO_RESET) THEN ROBOT_ONE&TWO RESET RELAY

10

Section 5: Wiring Diagram of the PLC and Arduino

PLC Wiring Diagram:

PLC WIRING SCHEMATIC

MASTER_START

T e
t——o o

MASTER_STOP

CONVEYOR_IN Jl
ee———
. CONVEYOR_OUT ﬁ

. CNC_FAN_1

CNC_FAN 2

MASTER_RESET / /T

4

0 o

L rl\.\f_ w

©
-

1
1
Mﬁ
\

\soqaS,,

0000

PART_IN

RELAY 2

o
3

PART_OUT

-
—b

©
—_
P | PART_PRESENT

24 VDC

11

Arduino wiring diagram on the next page...

Robot Arm One
Rotational Axis

(Stepper Motor)

Robot Arm One
Linear Axis

(Stepper Motor)

=

IqNgu LT TT

ETTTTTOT68LOSPETTO

Power Supply
ON/OFF

o +5V
3A

£ com

3 Power Supply
Arduino UNO ON/OFF
GND 5V v, +§X
L £ com

Robot Arm Two
Rotational Axis

(Stepper Motor)

Robot Arm Two

Linear Axis
(Stepper Motor)

T

—

ano

ETTITTOT 6B LOSPETTO

Arduino UNO
GND 5V
|;| |F| 1

Power Supply
ON/OFF

O

o +5V
3A

© com

Created by: Kurt Foster

12

Section 6: PLC Ladder Logic and Arduino Code

The following PLC program was created using the LogixPro Simulator. However,
the program is designed to run on Allen-Bradley CompactlLogix 5000 PLC's.

ooo

001

002

003

004

00s

008

007

008

IF MASTER_STOP AND (MASTER_START OR POWER_RELAY) THEN POWER_RELAY

LOM L0/0 B3:0/0
3 E TE
-4 O -
MASTER_STOP MASTER_START POWER_RELAY
83:0/0
3 E
POWER_RELAY Created by: Kurt Foster, 2017
IF POWER_RELAY AND NOT PART_IN THEN CONVEYOR_IN
B2:0/0 1073 0:1/0
== I
POWER_RELAY PART_MN CONVEYOR_IN

IF POWER_RELAY THEN CONVEYOR_OUT

B3:0/0 011
=
- L
POWER_RELAY CONVEYOR_OUT
IF POWER_RELAY AND (PART_IN OR CNC_TIME_1_TT_BIT) AND NOT (TOTAL_CELL_PARTS_25) THEN CNC_TIME_1
B3:0/0 LO/3 B3:0/1 ——
1 E J E - Timer On Delay
POWER_RELAY PART_IN TOTAL_CELL_PARTS_25 Timer T4:0
= Time Bsse 0.001
= i o Praset 50000
= L Acmmm 0
W_W_" CHC_1IE_1
IF POWER_RELAY AND PART_IN THEN TOTAL_PART_COUNTER (CTU)
B3:0/0 1073 ——CTI —————
J E i E guum Up s —CU———
POWER_RELAY PART_IN ounter 2
= Preset 0 (DN
Acoum 0

TOTAL_PART_COUNTER

IF POWER_RELAY AND PART_OUT THEN TOTAL_PART_COQUNTER (CTD)

B3:0/0 7] —<CTD
1 E J E Count Dowm | —cD——]
POWER_RELAY PART_OUT Counter cs0
- = Preset 0 |—CDND—
Acomm 0

TOTAL_PART_COUNTER

IF PART_COUNTER.ACC EQUALS 25 THEN TOTAL_CELL_PARTS_25 internal relay

QU —— B3:01
Equal
Source C5:0.ACC TOTAL_CELL_PARTS_25
?
Source B 25
4
IF TOTAL_COUNTER=28

IF RESET_COUNT THEN RESET TOTAL_PART_COUNTER

L0/8 C5:0
q E {RES)
RESET_COUNT TOTAL_PART_COUNTER
IF POWER_RELAY AND (LOW_LIMIT of 5 = CNC_TIME_1_ACC_BIT of 0 > HIGH_LIMIT of 1000) THEN ROBOT_ONE_RELAY_1
B3:0/0 ——LIM — 0:1/4
1 E Limit Test
POWER_RELAY Low L E ROBOT_ONE_RELAY_1
Test T4:.0.ACC
5
High Lim 1000

13

PLC code continued...

010

011

012

012

IF POWER_RELAY AND

B3:010 ——LIM
] [Limit Test
POWER_RELAY LowL 7000
5
Test T4:0.ACC
5

IF POWER_RELAY AND (LOW_LIMIT of 16000 > CNC_TIME_1_ACC_BIT of 0 > HIGH_LIMIT of 17000) THEN ROBOT_ONE_RELAY_2

High Lim 15000
?

(LOW_LIMIT 0f 7000 > CNC_TIME_1_ACC_BIT of 0 > HIGH_LIMIT of 15000) THEN CNC_FAN_1

o113

B3:0/0 ——LIM
] E Limit Test

POWER_RELAY LowL 16000

== ?

Test T4:0.ACC

3

IF POWER_RELAY AND (PART_PRESENT OR CNC_TIME_2.TT) THEN CNC_TIME_2

High Lim 17000

CNC_FAN_1

015

ROBOT_ONE_RELAY_2

B3:0/0 [——TON
J E 1 E Timer On Delay
POWER_RELAY PART_PRESENT Timex T4
e Time Base 0.001
5 Preset 50000
4 L Accum 0
ulc_'l'lﬁ_z m_“_z

IF POWER_RELAY AND (LOW_LIMIT of 5 > CNC_TIME_2_ACC_BIT of 0 > HIGH_LIMIT of 1000) THEN ROBOT_TWO_RELAY_3

0:16

B3:0/0 ——LIM
J E Limit Test
POWER_RELAY LowlL s
= ?
Test T4:1.ACC
?
High Lim 1000
2
IF POWER_RELAY
B3:0/0 ——LIM
1 E Limit Test
POWER_| na..w Low L s
-
Test T4:1.ACC
?
High Lim 1000
5

AND (LOW_LIMIT of 5 > CNC_TIME_2_ACC_BIT of 0 > HIGH_LIMIT of 1000) THEN ROBOT_TWO_RELAY_3

ROBOT_TWO_RELAY_3

0:1/6

>
ROBOT_TWO_RELAY_3

14

PLC code continued...

013

014

015

016

IF POWER_RELAY AND (LOW_LIMIT of 7000 > CNC_TIME_2_ACC_BIT of 0 = HIGH_LIMIT of 15000) THEN CNC_FAN_2

B3:0/0 ——LIM 0:112
J E Limit Test
POWER_RELAY LowL 70"‘3 CNC_FAN_2
Test T41.ACC
High Lim 15000
IF POWER_RELAY AND (LOW_LIMIT of 16000 > CNC_TIME_2_ACC_BIT of 0 > HIGH_LIMIT of 17000) THEN ROBOT_TWO_RELAY_4
83:0/0 ——LIM ———— o
1 E Limit Test
POWER_RELAY Low L Toaaa ROBOT_TWO_RELAY_4
Test T41.ACC
High Lim 17000

IF [POWER_RELAY AND (LOW_LIMIT 26000 > CNC_TIME_1_ACC > HIGH_LIMIT 27000 OR LOW_LIMIT 26000 >
CNC_TIME_2_ACC > HIGH_LIMIT 27000)] OR (ARDUINO_RESET) THEN OUTPUT

0:1/8
e

-~
ROBOT_ONE_RESET_RELAY

0:1/9

P

B3:0/0 —LIM
3 E Limit Test
POWER_RELAY LowL 26000
Test T4:0.ACC
High Lim 27000
——LIM
Linut Test
Lowl 26000
Test Ta:1.ACC
=
High Lim 27000
2
Lor2
=
il R
ARDUINO_RESET

ROBOT_TWO_RESET_RELAY

CEND]

Next, arduino code that powered the 5V steppers will be shown...

BETA VERSION CODE FOR ROBOT ARM ONE

Code Description: The following code would be used for single pushbutton manipulation of a

single robot arm. Every time you press the pushbutton momentarily, the robot would do the next

sequence of events, then wait until the pushbutton is pressed again. The program implements the

“while” function within each process.

#include <Stepper.h>

#define STEPS 200

Stepper stepper1(STEPS, 8, 9, 10, 11); // Extend/Retract Action Stepper
Stepper stepper2(STEPS, 0, 1, 2, 3); // Rotational Action Stepper

int pinButton = 6;

int LED = 13;

void setup()

{
pinMode(6, INPUT); // sets the digital pin 6 as Input

pinMode(13, OUTPUT); // sets the digital pin 13 as output
H

void loop()
{

int stateButton = digitalRead(6); //read the state of the button

while (digitalRead(6) == LOW) {} //wait until pushbutton

if(stateButton == 1) //if pushbutton is pressed
{ // NOTE: This bracket is required here for some reason...
stepper2.setSpeed(50); // Rotate Clockwise 90 deg

stepper2.step(320);

while (digitalRead(6) == LOW) {}
if(stateButton == 1)
stepperl.setSpeed(50); /| Extend Gripper
stepperl.step(-300);

while (digitalRead(6) == LOW) {}
if(stateButton == 1)
stepperl.setSpeed(50); // Retract Gripper to starting position
stepperl.step(300);

16

while (digitalRead(6) == LOW) {}
if(stateButton == 1)
stepper2.setSpeed(50);
stepper2.step(-160);

while (digitalRead(6) == LOW) {}
if(stateButton == 1)
stepperl.setSpeed(50);
stepperl.step(-300);

while (digitalRead(6) == LOW) {}
if(stateButton == 1)
stepperl.setSpeed(50);
stepperl.step(300);

while (digitalRead(6) == LOW) {}
if(stateButton == 1)
stepper2.setSpeed(50);
stepper2.step(-160);

while (digitalRead(6) == LOW) {}
if(stateButton == 1)
stepperl.setSpeed(50);
stepperl.step(-300);

while (digitalRead(6) == LOW) {}
if(stateButton == 1)
stepperl.setSpeed(50);
stepperl.step(300);

// Rotate 45 degrees CounterClockWise

/I Extend Gripper

// Retract Gripper to starting position

// Rotate 45 degrees CounterClockWise

/| Extend Gripper

// Retract Gripper to starting position

17

BETA VERSION CODE FOR ROBOT ARM TWO

Code Description: The following code is similar to the code for robot arm one as shown above,
however it makes use of the “stepSpeed” function. So by changing one number, you can change
the speed of the stepper. The wafer handling machines seemed to have trouble operating above
or below the range of 40 to 50, this issue was not resolved.

#include <Stepper.h>

#define STEPS 200

Stepper stepper1(STEPS, 8, 9, 10, 11); // Extend/Retract Action Stepper
Stepper stepper2(STEPS, 2, 3,5, 6); // Rotational Action Stepper

int LED = 13;

int stepSpeed = 40; //set all steppers full speed (DO NOT GO ABOVE 50, OR BELOW 40)
int inputPin = 7,

void setup()

{

pinMode(7, INPUT); // sets the digital pin 6 as Input

pinMode(13, OUTPUT); // sets the digital pin 13 as output

}

void loop()

{

int stateButton = digitalRead(inputPin); //read the state of the button

while (digitalRead(inputPin) == LOW) {} //wait until pushbutton
if(stateButton == 1) //if pushbutton is pressed

// NOTE: This bracket is required here for some reason...

/*

---Sequence goes as follows---

Extend gripper
Retract gripper
rotate arm 45 degrees Counterclockwise
Extend gripper
Retract gripper
rotate arm 45 degrees counterclockwise
Extend gripper
Retract gripper
rotate arm 90 degrees clockwise
*/
stepperl.setSpeed(stepSpeed); /| Extend Gripper
stepperl.step(-300);

18

while (digitalRead(inputPin) == LOW) {}
if(stateButton == 1)
stepperl.setSpeed(stepSpeed);
stepperl.step(300);

while (digitalRead(inputPin) == LOW) {}
if(stateButton == 1)
stepper2.setSpeed(stepSpeed);
stepper2.step(-160);

while (digitalRead(inputPin) == LOW) {}
if(stateButton == 1)
stepperl.setSpeed(stepSpeed);
stepperl.step(-300);

while (digitalRead(inputPin) == LOW) {}
if(stateButton == 1)
stepperl.setSpeed(stepSpeed);
stepperl.step(300);

while (digitalRead(inputPin) == LOW) {}
if(stateButton == 1)
stepper2.setSpeed(stepSpeed);
stepper2.step(-160);

while (digitalRead(inputPin) == LOW) {}
if(stateButton == 1)
stepperl.setSpeed(stepSpeed);
stepperl.step(-300);

while (digitalRead(inputPin) == LOW) {}
if(stateButton == 1)
stepperl.setSpeed(stepSpeed);
stepperl.step(300);

while (digitalRead(inputPin) == LOW) {}
if(stateButton == 1)
stepper2.setSpeed(stepSpeed);
stepper2.step(320);

// Retract Gripper to starting position

// Rotate 45 degrees CounterClockWise

/I Extend Gripper

// Retract Gripper to starting position

// Rotate 45 degrees CounterClockWise

/I Extend Gripper

// Retract Gripper to starting position

// Rotate 90 degrees ClockWise

19

FINAL CODE FOR ROBOT ARM ONE

#include <Stepper.h>

#define STEPS 200

Stepper stepper1 (STEPS, 8, 9, 10, 11); // Extend/Retract Action Stepper
Stepper stepper2(STEPS, 2, 3, 5, 6); // Rotational Action Stepper

int LED = 13;

int stepSpeed = 40; //set all steppers full speed (DO NOT GO ABOVE 50, and below 40)
int inputPinl = 7;

int inputPin2 = 4;

int OutputPinl = 12;

int OutputPin2 = 13;

void setup()

{
pinMode(inputPinl, INPUT); // sets the digital pin 7 as Input
pinMode(inputPin2, INPUT); // sets the digital pin 4 as Input

pinMode(OutputPinl, OUTPUT);
pinMode(OutputPin2, OUTPUT);
pinMode(13, OUTPUT); // sets the digital pin 13 as output

void loop()

{
/*

---Sequence goes as follows:

Extend gripper

Retract gripper

rotate arm 45 degrees Counterclockwise
Extend gripper

Retract gripper

rotate arm 45 degrees counterclockwise
Extend gripper

Retract gripper

rotate arm 90 degrees clockwise

*/

if((digitalRead(inputPin1) == HIGH))
{

stepper2.setSpeed(stepSpeed); // Rotate 90 degrees ClockWise

20

stepper2.step(320);

stepperl.setSpeed(stepSpeed); /I Extend Gripper
stepperl.step(-300);

stepperl.setSpeed(stepSpeed); // Retract Gripper to starting position
stepperl.step(300);
stepper2.setSpeed(stepSpeed); // Rotate 45 degrees CounterClockWise

stepper2.step(-160);

stepperl.setSpeed(stepSpeed); /I Extend Gripper
stepperl.step(-300);

}
if((digitalRead(inputPin2) == HIGH))
{
stepperl.setSpeed(stepSpeed); // Retract Gripper to starting position

stepper1.step(300);

stepper2.setSpeed(stepSpeed); // Rotate 45 degrees CounterClockWise
stepper2.step(-160);

stepperl.setSpeed(stepSpeed); /I Extend Gripper
stepperl.step(-300);

stepperl.setSpeed(stepSpeed); // Retract Gripper to starting position
stepperl.step(300);

digitalWrite(OutputPinl, LOW);

21

FINAL CODE FOR ROBOT ARM TWO

#include <Stepper.h>

#define STEPS 200

Stepper stepper1 (STEPS, 8, 9, 10, 11); // Extend/Retract Action Stepper
Stepper stepper2(STEPS, 2, 3, 5, 6); // Rotational Action Stepper

int LED = 13;

int stepSpeed = 40; //set all steppers full speed (DO NOT GO ABOVE 50, and below 40)
int inputPinl = 7;

int inputPin2 = 4;

int OutputPinl = 12;

int OutputPin2 = 13;

void setup()

{
pinMode(inputPinl, INPUT); // sets the digital pin 7 as Input
pinMode(inputPin2, INPUT); // sets the digital pin 4 as Input

pinMode(OutputPinl, OUTPUT);
pinMode(OutputPin2, OUTPUT);
pinMode(13, OUTPUT); // sets the digital pin 13 as output

void loop()

{
/¥

---Sequence goes as follows:

Extend gripper

Retract Gripper to starting position
Rotate 45 degrees CounterClockWise
Extend gripper

Retract gripper

rotate arm 45 degrees counterclockwise
Extend gripper

Retract gripper

rotate arm 90 degrees clockwise

*/

if((digitalRead(inputPinl) == HIGH))
{

stepperl.setSpeed(stepSpeed); /I Extend Gripper
stepper1.step(-300);

22

stepper1.setSpeed(stepSpeed);
stepper.step(300);

stepper2.setSpeed(stepSpeed);
stepper2.step(-160);

stepperl.setSpeed(stepSpeed);
stepperl.step(-300);

}

// Retract Gripper to starting position

// Rotate 45 degrees CounterClockWise

/I Extend Gripper

if((digitalRead(inputPin2) == HIGH))

{

stepperl.setSpeed(stepSpeed);
stepperl.step(300);

stepper2.setSpeed(stepSpeed);
stepper2.step(-160);

stepperl.setSpeed(stepSpeed);
stepperl.step(-300);

stepperl.setSpeed(stepSpeed);
stepperl.step(300);

stepper2.setSpeed(stepSpeed);
stepper2.step(320);

digitalWrite(OutputPinl, LOW);

// Retract Gripper to starting position

// Rotate 45 degrees CounterClockWise

/I Extend Gripper

// Retract Gripper to starting position

/I Rotate 90 degrees ClockWise

23

Section 7: Photos of the System Wired Together

Here is the prototype wired system done early on. This was to see if a PLC could tell an arduino
what to do and vice-versa. You can also see the wafer handling machines that were used for
operation. They were just donated to the college, and I was the first to get them up and running.
The little red boards next to the arduino’s are motor drivers rated to 3A. There is one for each
stepper motor, who's running amperage was 2A.

Demonstration YouTube Link: https://voutu.be/VDCZo-pmgzg

As you can probably tell, I was already running out of room. This project didn’t require
organizing the wire system, but if I had extra time, I would do that next. Making the system more
organized makes it easier to troubleshoot problems.

24

https://youtu.be/VDCZo-pmgzg

Here is the system all “organized” with the two 120V CNC machine “fans” in the front. Start is
the green, stop is the red. The blue button is the reset.

This next picture was a little more into the process. 120V fans were replaced with 24V fans, and
I added extra relays to give reset functionality to the arduinos via the PLC.

25

